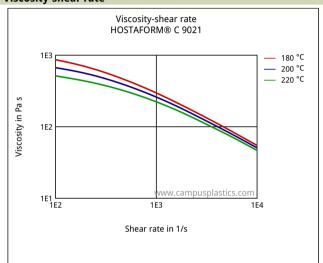
CAMPUS® Datasheet

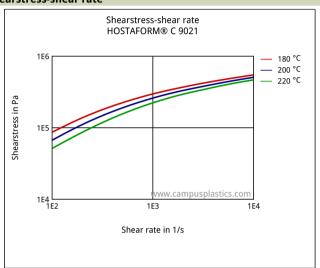
HOSTAFORM® C 9021 - POM Celanese

Product Texts

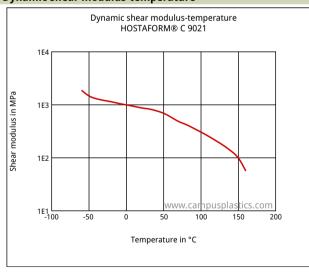
Chemical abbreviation according to ISO 1043-1: POM Molding compound ISO 29988- POM-K, M-GNR, 03-002 POM copolymer Medium viscosity molding grade with high rigidity, hardness and toughness; good chemical resistance to solvents, fuel and strong alkalis as well as good hydrolysis resistance; high resistance to thermal and oxidative degradation. Monomers and additives are listed in EU-Regulation (EU) 10/2011 FDA compliant according to 21 CFR 177.2470 UL-registration for all colours and a thickness more than 1.5 mm as UL 94 HB, temperature index UL 746 B electrical 110 °C, mechanical 90 °C. Burning rate ISO 3795 and FMVSS 302 < 75 mm/min for a thickness more than 1 mm. Ranges of applications: automotive engineering, precision engineering, electric and electronical industry, domestic appliances. FDA = Food and Drug Administration (USA) FMVSS = Federal Motor Vehicle Safety Standard (USA) UL = Underwriters Laboratories (USA)

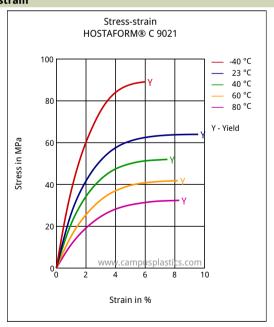

Rheological properties	Value	Unit	Test Standard
Melt volume-flow rate, MVR	8	cm³/10min	ISO 1133
Temperature	190	°C	ISO 1133
Load	2.16	kg	ISO 1133
Molding shrinkage, parallel	2.0	%	ISO 294-4, 2577
Molding shrinkage, normal	1.9	%	ISO 294-4, 2577
Mechanical properties	Value	Unit	Test Standard
Tensile modulus	2850	MPa	ISO 527-1/-2
Yield stress	64	MPa	ISO 527-1/-2
Yield strain	9	%	ISO 527-1/-2
Nominal strain at break	30	%	ISO 527-1/-2
Tensile creep modulus, 1h	2500	MPa	ISO 899-1
Tensile creep modulus, 1000h	1300	MPa	ISO 899-1
Charpy impact strength, +23°C	220P	kJ/m²	ISO 179/1eU
Charpy impact strength, -30°C	220	kJ/m²	ISO 179/1eU
Charpy notched impact strength, +23°C	6.5	kJ/m²	ISO 179/1eA
Charpy notched impact strength, -30°C	6	kJ/m²	ISO 179/1eA
Thermal properties	Value	Unit	Test Standard
Melting temperature, 10°C/min	166	°C	ISO 11357-1/-3
Temp. of deflection under load, 1.80 MPa	104	°C	ISO 75-1/-2
Temp. of deflection under load, 0.45 MPa	160	°C	ISO 75-1/-2
Coeff. of linear therm. expansion, parallel	110	E-6/K	ISO 11359-1/-2
Coeff. of linear therm. expansion, normal	110	E-6/K	ISO 11359-1/-2
Burning behavior at 1.5 mm nominal thickness	НВ	class	IEC 60695-11-10
Thickness tested (1.5)	1.5	mm	IEC 60695-11-10
Burning behavior at thickness h	НВ	class	IEC 60695-11-10
Thickness tested (h)	3.0	mm	IEC 60695-11-10
Yellow Card available	Yes	-	-
Electrical properties	Value	Unit	Test Standard
Relative permittivity, 100Hz	4	-	IEC 62631-2-1
Relative permittivity, 1MHz	4	-	IEC 62631-2-1
Dissipation factor, 100Hz	20	E-4	IEC 62631-2-1
Dissipation factor, 1MHz	50	E-4	IEC 62631-2-1
Volume resistivity	1E12	Ohm*m	IEC 62631-3-1
Surface resistivity	1E14	Ohm	IEC 62631-3-2
Electric strength	35	kV/mm	IEC 60243-1
Comparative tracking index	600	-	IEC 60112

HOSTAFORM® C 9021 - POM Celanese

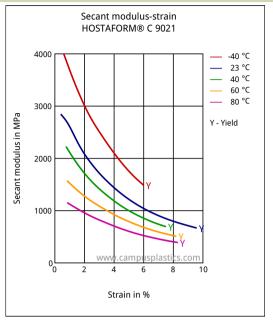

Other properties	Value	Unit	Test Standard
Water absorption	0.65	%	Sim. to ISO 62
Humidity absorption	0.2	%	Sim. to ISO 62
Density	1410	kg/m³	ISO 1183
Rheological calculation properties	Value	Unit	Test Standard
Thermal conductivity of melt	0.155	W/(m K)	-
Ejection temperature	127	°C	-

Diagrams

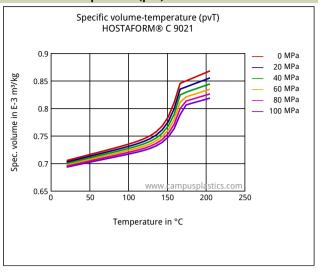

Viscosity-shear rate


Shearstress-shear rate

Dynamic shear modulus-temperature



Stress-strain



HOSTAFORM® C 9021 - POM Celanese

Secant modulus-strain

Specific volume-temperature (pvT)

Characteristics

Processing

Injection Molding, Film Extrusion, Profile Extrusion, Sheet Extrusion, Other Extrusion, Blow Molding

Delivery form

Pellets

Additives

Release agent

Regional Availability

North America, Europe, Asia Pacific, South and Central America

Other text information

Injection molding

Preprocessing

General drying is not necessary due to low moisture absorption of the resin.

In case of bad storage conditions (water contact or condensed water) the use of a recirculating air dryer (100 to 120 $^{\circ}$ C / max. 40 mm layer / 3 to 6 hours) is recommended.

Max. Water content 0,2 %

Processing

Standard injection moulding machines with three phase (15 to 25 D) plasticating screws will fit.

Postprocessing

Conditioning e.g. moisturizing is not necessary.

Film extrusion

Preprocessing

HOSTAFORM® C 9021 - POM

Celanese

General drying is not necessary due to low moisture absorption of the resin.

In case of bad storage conditions (water contact or condensed water) the use of a recirculating air dryer (100 to 120 °C / max. 40 mm layer / 3 to 6 hours) is recommended.

Max. Water content 0,2 %

Processing

Standard extruders with grooved feed zone and short compression screws (minimum 25 D) will fit.

Melt temperature 180-190 °C

Postprocessing

Conditioning e.g. moisturizing is not necessary.

In case of very thick wall thickness profiles after-annealing it is recommended to reduce internal stress.

Annealing temperature 130-140 °C Annealing time 10 min/mm thickness

Other extrusion

Preprocessing

General drying is not necessary due to low moisture absorption of the resin.

In case of bad storage conditions (water contact or condensed water) the use of a recirculating air dryer (100 to 120 °C / max. 40 mm layer / 3 to 6 hours) is recommended.

Max. Water content 0,2 %

Processing

Standard extruders with grooved feed zone and short compression screws (minimum 25 D) will fit.

Melt temperature 180-190 °C

Postprocessing

Conditioning e.g. moisturizing is not necessary.

In case of very thick wall thickness profiles after-annealing it is recommended to reduce internal stress.

Annealing temperature 130-140 °C Annealing time 10 min/mm thickness

Sheet extrusion

Preprocessing

HOSTAFORM® C 9021 - POM Celanese

General drying is not necessary due to low moisture absorption of the resin.

In case of bad storage conditions (water contact or condensed water) the use of a recirculating air dryer (100 to 120 °C / max. 40 mm layer / 3 to 6 hours) is recommended.

Max. Water content 0,2 %

Processing

Standard extruders with grooved feed zone and short compression screws (minimum 25 D) will fit.

Melt temperature 180-190 °C

Postprocessing

Conditioning e.g. moisturizing is not necessary.

In case of very thick wall thickness profiles after-annealing it is recommended to reduce internal stress.

Annealing temperature 130-140 °C Annealing time 10 min/mm thickness

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colorants or other additives may cause significant variations in data values. Properties of molded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users seek and adhere to the manufacturer's current instructions for handling each material they use, and entrust the handling of such material to adequately trained personnel only. Please call the telephone numbers listed for additional technical information. Call Customer Services for the appropriate Materials Safety Data Sheets (MSDS) before attempting to process our products.

© 2024 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC. KEPITAL is a registered trademark of Korea Engineering Plastics Company, Ltd.